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Abstract. The effects of inhomogeneity in a system with strong quantum fluctuations
are investigated by a quantum Monte Carlo simulation (Qmc). The properties of an
antiferromagnetic Heisenberg mode! with S = % on the square lattice diluted by non-
magnetic impurities are investigated. The spatial distribution of the spin correlations
near impurities are found to be largely enhanced. On the other hand, from ihe size
dependence of the square of the staggered magnetization per spin, the correlations
between largely separated spins are found to be smaller than in the non-diluted case. It
has been found that the existence of non-magnetic sites causes the ergodicity problem
in QMc. In order to avoid this difficulty we introduce a new type of global flip. With
this type of flip @MC gives good agreement with results obtained by exact diagonalization
methods even for systems with highly concentrated impurities. The methodological points
are also discussed in detail.

1. Introduction

The nature of the order of the Heisenberg antiferromagnet (S = 1) on the square
lattice has been studied extensively [1-3]

H=2J) 58 (L1)

(i)
where § = } o; o are the Pauli matrices. It is generally believed that this model has
long-range staggered order in the ground state. But the value of the order parameter

is much reduced by the quantum fluctuations due to the non-commutativity between
the order parameter

N.=) of-> ot (1.2}
i€A icB

and the Hamiltonian. In such systems, the effect of inhomogeneity on the correlation
function has been one of recent interest [4-8]. We have studied the effect of non-
magnetic impurities by using quantum Monte Carlo simulations (QMcC) [7]. We are
interested in phenomena due to the combination of the effect of the impurities and
the quantum effects. It has been found that correlation functions are not necessarily
reduced but sometimes enhanced by impurities [4-8]. On the other hand, we may also
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expect the quantum fluctuations to cause a reduction in the long-range correlations
and thus a change in the percolation threshold of impurity concentration for long-
range order in the ground state. In order to study these effects, we investigate the
microscopic distribution of the spin correlation functions. For the local effects of the
impurities, we studied L x L = 4 x 4 Jattices by an exact diagonalization method. We
find the enhancements near impurities very clearly. In the present model the nearest-
neighbour (NN) correlation is proportional to the energy and the enhancement can
be understood generally [9] from the variational principle that

HGp [ Himp | Gp) | € 1{Gi | Himp | G} | (1.3)

where | G) is the ground-state wavefunction for the pure system and | G} the
ground-state wavefunction of H, . Because the Hamiltonian is the summation of
NN correlations, the average value of NN correlations should be enhanced. Some of
the further correlations are, however, also found to be enhanced. Then, it is another
interesting problem to investigate how far the correlations are enhanced.

For larger lattices, we have performed QMC simulations based on the Suzuki-
Trotter decomposition. We find similar enhancements near impurities. But the en-
hancement is found to be localized around the impurity and the correlation between
largely separated spins are found to be reduced. In order to study the nature of
long-distance correlations, we investigate the square of the staggered magnetization,
(N2)/N2 where N, is the number of spins. In our previous report [7], large en-
hancements of the square staggered magnetization were reported. But it has been
found that the existence of non-magnetic sites causes difficulty for the ergodicity in
oMmc. In particular at low temperatures, the antiferromagnetic order has a tendency
to be enhanced too much by a type of freezing effect due to a lack of ergodicity in
QMC. We have concluded that the previous data at low temperatures were frozen in
some metastable states. In order to avoid this difficulty we introduced a new type
of global flip. The methodological points are given in the appendix. QMC with the
new algorithm gives good agreement with results by an exact diagonalization method
even for systems with highly concentrated impurities (non-magnetic sites). (N2)/N?
is now found to be reduced for larger lattices. From the size dependence of this
quantity, we conclude that the correlation between large separated spins are smaller
than in the pure case.

In section 2, the model and the methods are given and in section 3.1, the local
enhancement of correlations and the spatial distribution of correlations obtained by
diagonalization method and QMC are shown. In section 3.2 the size dependence of
the square of the staggered magnetization is investigated. Discussion and a summary
are given in section 4.

2. Model and methods

The Hamiltonian of the model studied here is
H=2J) €S5S, @1
{i.4)
where €, =1 or 0. We choose the positions where ¢ = 0 randomly. These positions
will be called ‘impurities’. The concentration of impurities is defined by 6,

§=1-Y ¢/L (2.2)
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We used the QMC method based on the Suzuki-Trotter decomposition [10] using the
chequer-board decomposition [11]:

H=H,+H, (2.3)

where

J
H = 2 Z O2i—1,27-1%2i,2—1F 02:,9;102i,3; T 024 3 F2i-1,2j + O2i—1,2;02i~1,25-1
1,5

J
H, = Y Zag,-,g,-025+1,2j t 02i41,2i F2i41,25 41 F T2i41,2541 020 2541 T 024 2541 92,25
.5

for all lattice sites with spin. Here we have three states on a site ¢,
o,=00r +1lor -1 (2.4)

corresponding to impurity, spin-up and spin-down, respectively. In the present simu-
lation we prepared a general algorithm for three states. Partly because this provides
uniform operation for the whole lattice, which has an advantage in the vectorization
of the program and partly because this can be extended to more general cases where
the impurities can move (hopping of hole) or the case with § = 1. Thus, the unit of
the local Boltzmann factor

p(a1, 04,05, 04,01.0%,03,0,)=(0,,0,,03, 04| exp(—ﬂ/m’}t(n) | 01,05, 95, 94}

(2.5)

is 3" x 34, where m is the Trotter number. In the present case the model has the
conservation law,

o to,to;+o, =0 +o5 405+ (2.6)

and the size of the table of p is 3",

Detailed points of the simulation are given in the appendix but the most impor-
tant new point is how to recover the ergodicity of the Monte Carlo time evolution.
A ‘Néel chain’, which is a sequence of up—down spins in real space in a Trotter layer,
hardly flips simultancously near impurities, if we do not include the global flip. And
configurations are easily frozen at low temperatures. This also caused large enhance-
ments of the staggered correlations [7]. In order to avoid this effect we introduced
a type of global flip around the impurities (loop flip) together with a non-straight
Marcu flip [12].

3. Distribution of the stagpered correlation

3.1. Local enhancements

In order to see the nature of the enhancement of the staggered magnetization around
the impurities, we first investigated the ground state and several excited states of 4 x 4
systems by a diagonalization method, Low-temperature data are obtained from low
excitations using the canonical weight. The distribution of NN correlations are given
for several samples in figure 1 (for comparison we used 7' = 0.2J). As we mentioned
in section 1, it is natural that the NN correlations are enhanced but we find that some
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further-neighbour correlations are also enhanced and these are listed in table 1. In
particular figure 1(z) was investigated in [6]. Although in the spin wave calculations
the z- and z-components are¢ not the same, a similiar tendency is found. For this
lattice T = 0 and T = 0.2 are essentially the same. Next we study larger lattices in
order to investigate how well-separated correlation functions are enhanced. The 4 x 4
lattice is too small and even the furthest correlation function is enhanced in some
configuration. Then we investigate 8 x 8 and 12 x 12 lattices by QMC. The distribution
of NN correlations at T = 0.2J for one configuration is given in figure 2, where we
find enhancements which are qualitatively similar to those in figure 1. But we would
like to point out that some correlations are reduced even in neighbours of impurities.
This non-uniform enhancement will be discussed in section 4. The average of the NN
correlations gives the energy. The concentration dependence of the energy E(6) is
given in figure 3, where E(§) is normalized by the number of sites, NV, and also the
number of spins, N,.
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Further-neighbour correlations are listed in table 2, where correlations enhanced
by more than 4% are listed. We find that the number of enhanced correlations
decreases as the distance increases. The range of enhancement is rather short. In
order to see the distance dependence of the correlations, we study the square of the
staggered magnetization in the next section.
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Table 1. Further-neighbour correlations c; enhanced by more than 2% normalized to
the pure case value ¢ for the same configurations as in figures 1(a), (b), (¢).

Configuration of figure 1(a) Configuration of figure 1(b) Configuration of figure 1(c)

Site; —sitey ¢ €p Site -site; cr cp Site, ~site; cr cp

(1, )-2,2) 1029 0285 (4, 41(, 1) 1020 0285 (1,1}(3,2) 1079 0269
(G 1~2,2) 1029 0285 (1, 1)-42) 1020 0285 (4,32 4) 1079 0269
(4,2)«1,3) 1029 0285 (I,2)-(4,3) 1020 0285 (4,3, 1) 1079 0269
(4,23,3) 1029 0285 (4,3, 4 1020 0285 (2,4-(3,2) 1079 0269
(1,314, 4) 1029 0285 (1, (1, 3) 1020 0285

(3.3)(4, 4 1029 0285 (4, 1)(4,3) 1020 0285

(2,43, 1) 1029 0285 (4, 3)(1, 1) LI60 0269

(2,41, 1) 1029 0285 (1, 1)2 3 1035 0269

(L O~(1,3) 1028 0285 (3,41, 1) 1035 0269

(3, 1~(3.3) 1029 0285 (1,1}, 2 1035 0269

(2, 2+4,2) 1029 0285 (3, )4, 3) 1035 0269

(2,944 1029 0285 (2,24, 3) 1035 0269

(4 D~(2,2) 1038 0269 (4324 L035 0269

@ D=1, 3 1038 0269

(3,34 1) 1038 0269

(2, 494, 1) 1038 0269

3.2. Size dependence of the square of the staggered magnetization

The square of N,, {N2) where (---) denotes the expectation value in the ground
state, is a summation of all staggercd correlations in the sense

a—
2
e
1l
i
™
——
5
®
Q
™
™
——
o
-y
A

Thus, if we study the size dependence of this quantity per spin,
A= (N2/N?) (42)

the distance dependence of the correlation function can be known. In classical
systems, A does not depend on N. For quantum systems, .4 may be larger than
the pure case in small lattices such as 4 x 4 because the short-range correlations
dominate. On the other hand, for large lattices the long-range correlations dominate.
The size dependence of A is plotted in figure 4, where we find that 4 decreases as the
size increases. Thus we conclude that the correlation functions of largely separated
spins are reduced by the existence of impurities. In figure 5 the correlation function
for N =12 with § = 0.125 averaged over five samples are compared with the pure
case. Here we again see the reduction. The amount of the reduction has not yet been
investigated systematically but it might give a change in the percolation threshold of
the impurity concentration for the long-range order in the ground state. This should
be due to the quantum fluctuations and will be studied in future [15].

4. Summary and discussion

We have studied the spin correlation function (S§;5,). Due to the quantum effects
the correfation functions are modificd even in the ground state. We have shown
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Figure 2. Nearest neighbour spin correlations at T = 0.2.J for one configuration with
L = 8 and B impurities normalized to the pure case value (—0.462) obtained by omC
simulation. (More than 4% enhanced NNN correlations are indicated by +.)

the distribution of correlation functions obtained by QMC for several samples. We
found a similiar tendency, which has been previously pointed out [6]; namely the spin
correlations are enhanced near the impurity sites (non-magnetic sites). But we also
found that the range of the enhancement is somewhat short. On the other hand, the
correlation functions are reduced at large distance. As we pointed out in section 2, the
enhancement near impurities is not necessarily uniform. There are many correlations
which are reduced even in the neighbours of impurities, although the others are very
strongly enhanced. The mechanism of this non-uniform enhancement should have a
purely gquantum origin and it remained as ‘quantum interference’ in spin system.
Here we would like to point out the following tendency of the enhancement. The
correlations at corner positions, where a spin has only two neighbours, are strongly
enhanced (e.g. (& = 5,y = 4) or (x = 6,y = 3) in figure 2). And the correlations of
other spins which have only two neighbours aiso have the tendency to be enhanced.
At least one of the correlations around spins with three neighbours is enhanced. Thus
we see a strong relation between the number of neighbours and enhancement. On
the other hand we also find an alternate enhancement, namely, if a bond is enhanced,
the next ones are reduced. The distribution of enhancement seems to be determined
by these tendencics. Most cases in figure 2 can be understood in this way. A more
precise mechanism for this competition between order and fluctuation will be studied
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Figure 3. Energy depending on impurity concentration § normalized (4) to the number
of lattice sites IV and (b} to the number of spins N, (T = 0.2.J).

Table 2. Further-neighbour correlations ¢, enhanced by more than 4% normalized to
the pure case value ¢p for the same configuration as in figure 2.

Site; —sites cr cp

(5. 94,5 Ll14 0288
(1,42, 5) 1067 0288
(4, 1)-(5,2) 1056 0288
(2,33, 4) 1050 0288
(7,2)-(6,3) 1050  0.288
(5, D4, 2) 1.046 0.288
& 87, 1) 1.045 0.288
(7,2)~(8,3) 1041 0288
(7, 136, 3) 1.0%9 0.242
(1. 13-(8, 3) 1085 Q242
(8, 2)-(6,3) 1056 0242
(2, 5)-(8, 6) 1050 0.242
(Z,5-(1, Ty 1042 0242

in the future [13).

We may expect that the effect of the quantum interference causes a rapid reduc-
tion in the spin correlation function at a large distance in random systems, which is
an analogy of the Anderson localization in spin systems. This reduction mechanism
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Figure 4. Sublatlice magnetization depending on impurity concentration § normalized
to the number of spins N, (T = 0.2.).
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Figure 5. The corvelation {¢Zo?} as a function of the distance r for N = 12 with
§=0.0and 6§ =0,126 at T'=0.2.

might give a change in the percolation threshold of impurity concentration for the
long-range order in the ground state. The point is being investigated and will be
reported elsewhere [13]. Similar effects could be seen on the triangular lattice with
non-magnetic impurities, although the frustration effect may have an important role
for the local enhancements there [14].

In thic naner we concentrate on the micracennic f\rnnprt ac in dictributinn of
41k ‘.ll“ P P YW WASIIVW MWL AlWw ULL LW llllUanwl—'l luyv AW LEaAv (9 i

the enhancements of correlation due to the impurities, which is one of the most
interesting features of the imhomogeneous quantum system, For the macroscopic
quantities such as the energy, magnetization, etc, we have to perform a sample
average over randomness of impurity position. In this paper we studied {N2/NZ}
preliminarily in order to see the distance dependence of the correlation. So far we
have found small scatterings of data over a few samples. But the properly averaged
data will be reported elsewhere. The problem of the percolation threshold of the
long-range order in the ground state will also investigated quantatively there [15].
We would also like to point out the following. So far we have studied (S;S;),
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Table 3. Flip acceptance ratios for one plane and the simulation of different Trotter
numbers mg for the flip types shown in figure 7 and the simulation of figure 9.

Flip types
mo 1 2 3 4 5 6

16 00346  0.0344  0.0345 00345 00022  0.0021
24 0.0155 0156  0.0158 00157  0.0005 0.0005
32 0.0083 00083 00082 0.0083 0.0002  0.0002
48 0.0031 00031  0.0031 0.0031 0.0000  0.0000

which is the direct correlation. If we see the frequency of types of flip, we find that
loop flips around impurities frequently occur. This suggests that the configurations

arnund the imnuritiee vere oftan chanos Paoning tha relativa 1 m 1
IV WL LR ulll’“l Akl VUIJ ASALWAL Ullﬂlls\u n.UUPllls LTIl LS IGLLIY W antﬁerrcll.ag“euc elrdelrd

In table 3, the acceptance ratios for flips are given. Thus it will also be interesting to
study the canonical correlation

8
(0;0;) = %f o o A=A ) (5.1)
0

where § is the inverse temperature, at low temperaturcs. We also presented the
technical details of our QMC algorithm, which are important to obtain correct data
efficiently in the diluted systems and to overcome the ergodicity problem of the
simulation.

The present work is partially supported by the Grant-in-Aid of the Ministry of Educa-
tion, Sciences and Culture of Japan. One of the authors (JB) like to thank the BMFT
for financial support in Germany and the DAAD for financial support in Japan.

Appendix

In this appendix we describe the details of the QMC simulation. As has been men-
tioned in section 2, we used the chequer-board type of the Suzuki-Trotter decomposi-
tion. Thus the local Boltzmann factor contains four spins and then is a 3% x 3* matrix.
Because an impurity does not move, the ergodicity of the simulation is much more
difficult to satisfy than in the pure case. If we consider a worldline with a non-zero
winding number between two impurities (figure 6), we find that the line cannot escape
from the two impurities. Thus in order to satisfy the ergodicity of winding numbers
we have to prepare types of global flip for all possible paths between the impurities.
We prepare these in the following way. First we prepare ‘a loop flip’ around each
cluster of impurities. Next, we prepare several horizontal global flips (Marcu flips),
some of which are not straight. It is easy to see that a combination of these will give
all possible paths. In figure 7 the different flip types which are used in the simulation
are shown.

We have compared the data with and without the new flips. First we have
compared the distribution of NN correlations of figure 1(b) (exact diagonalization)
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with the data by QMC without the new flips but with straight Marcu flips and with
those by QMC without the new flip types. We found that all of them agree within
the error bars. This is so because the straight Marcu flips are sufficient to recover
the ergodicity for this case. In the simulation which was previously reported, we used
QMC with only the straight Marcu flips, which seemed to be sufficient. However we
found that this was not enough for more complicated cases. Then, we look at the
data for a lattice with four impurities. Here the straightest Marcu flip no longer
works. We find a clear difference between figures 8 and 9 (see also figure 1(c)),
and the data obtained by QMC without the new fiip types (figure 8) show too much
enhancement of the correlations. This is the reason why we reported too much
enhancement in the previous report [7]. Now we believe that we have overcome
this difficulty. In order to confirm the validity of the simulation, we compared two
equivalent samples in different installations. Namely we shifted the origin site one
anything physically because of the periodic boundary condition. But it gives large
changes in the three-dimensional Trotter lattice. We performed both simulations and
we found no difference between them. Thus, we conclude that our new method is
valid for imhomogeneous quantum systems such as the present model.
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Figure 8. Nearest neighbour spin correlations at  Figure 9. Nearest neighbour spin correlations
T = 0.2J for the same configuration as in figure at T = 0.2J for the same configuralion as in
1{c) normalized to the pure case value {—0.4676) figure 1(c) normalized to the pure case value
obtained by gMC (more than 2% enhanced nnn (-0.4676) obtained by OQMC with additional new
correlations are indicated by =.) types of flips (figure 7).
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