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AbstmcL The effects of inhomogeneity in a system with slmng quantum fluctuations 
are investigated by a quantum Monte Carlo simulation (OMC). The pmpenies of an 
antiferromagnetic Heirenberg model with S = f on the square lattice diluted by non- 
magnetic impurities me investigated. The spatial distribution of the spin correlations 
near impurities are found to be largely enhanced. On the other hand, fmm the size 
dependence of the square of the staggered magnetization per spin, the correlations 
between largely separated spins are found to be smaller than in the non-diluted case. I t  
has been found thal the existence of nonmagnetic sites causes the ergodicity problem 
in QMC. In order lo avoid this difficulty we introduce a new type of global flip. With 
this type of flip OMC gives gmd agreement with results oblained by mac1 diagonalization 
methods even for systems with highly concentrated impurities. The methodological points 
are also discussed in detail. 

1. Introduction 

The nature of the order of the Heisenberg antiferromagnet (S = k) on the square 
lattice has been studied extensively [l-31 

where S = $ U ;  U are the Pauli matrices. It is generally believed that this model has 
long-range staggered order in the ground state. But the value of the order parameter 
is much reduced by the quantum fluctuations due to the non-commuativity between 
the order parameter 

z U: 
i € B  

and the Hamiltonian. In such systems, the effect of inhomogeneity on the correlation 
function has been one of recent interest [MI. We have studied the effect of non- 
magnetic impurities by using quantum Monte Carlo simulations (QMC) [7]. We are 
interested in phenomena due to the combination of the effect of the impurities and 
the quantum effects. It has been found that correlation functions are not necessariiy 
reduced but sometimes enhanced by impurities [MI. On the other hand, we may also 
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expect the quantum fluctuations to cause a reduction in the long-range correlations 
and thus a change in the percolation threshold of impurity concentration for long- 
range order in the ground state. In order to study these effects, we investigate the 
microscopic distribution of the spin correlation functions. For the local effects of the 
impurities, we studied L x L = 4 x 4 lattices by an exact diagonalization method. We 
find the enhancements near impurities very clearly. In the present model the nearest- 
neighbour (NN) correlation is proportional to the energy and the enhancement can 
be understood generally [9] from the variational principle that 

where I GP) is the ground-state wavefunction for the pure system and I Gi) the 
ground-state wavefunction of ‘Himp. Because the Hamiltonian is the summation of 
NN correlations, the average value of NN correlations should be enhanced. Some of 
the further correlations are, however, also found to be enhanced. Then, it is another 
interesting problem to investigate how far the correlations are enhanced. 

For larger lattices, we have performed QMC simulations based on the Suzuki- 
’Itotter decomposition. W e  find similar enhancements near impurities. But the en- 
hancement is found to be localized around the impurity and the correlation between 
largely separated spins are found to be reduced. In order to study the nature of 
long-distance correlations, we investigate the square of the staggered magnetization, 
( N ; ) / N :  where N ,  is the number of spins. In our previous report [7], large en- 
hancements of the square staggered magnetization were reported. But it has been 
found that the existence of nonmagnetic sites causes difficulty for the ergodicity in 
QMC. In particular at low temperatures, the antiferromagnetic order bas a tendency 
to be enhanced too much by a type of freezing effect due to a lack of ergodicity in 
QMC. We have concluded that the previous data at low temperatures were frozen in 
some metastable states. In order to avoid this difficulty we introduced a new type 
of global flip. The methodological points are given in the appendix. QMC with the 
new algorithm gives good agreement with results by an exact diagonalization method 
even for systems with highly concentrated impurities (nonmagnetic sites). ( N : ) / N :  
is now found to be reduced for larger lattices. From the size dependence of this 
quantity, we conclude that the correlation between large separated spins are smaller 
than in the pure case. 

In section 2, the model and the methods are given and in section 3.1, the local 
enhancement of correlations and the spatial distribution of correlations obtained by 
diagonalization method and QMC are shown. In section 3.2 the size dependence of 
the square of the staggered magnetization is investigated. Discussion and a summary 
are given in section 4. 

J Behre and S Miyashita 

I (G, I %Himp I GP) I b I (Gi I % i m p  I Gi) I (1.3) 

2. Model and methods 

The Hamiltonian of the model studied here is 

‘ H = Z J C < ; E ~ S ~ . S ,  (2.1) 

6 = 1 - C e i / L 2 .  

( i d  

where t i  = 1 or 0. We choose the positions where t = 0 randomly. These positions 
will be  called ‘impurities’. The concentration of impurities is defined by 6, 

(2.2) 
i 



Diluted Hekenberg antifemmagnets (S = i) on the square lattice 4147 

We used the QMC method based on the Suzuki-Potter decomposition [lo] using the 
chequer-board decompcsition [ 111: 

' H = H , t ? &  (2.3) 

'HI = 7 ? ~ 2 i - 1 , 2 j - 1 ~ 2 i , 2 j - 1  + o z i , z ; - 1 0 2 i , z j  t u 2 i , 2 j u 2 i - - l , 2 j + u 2 i - - 1 , 2 j u 2 i - 1 , 2 j - l  

~2 = - C u 2 i , 2 j u z i t l , 2 j  + ~ 2 i t 1 , ~ j ~ 2 i + 1 , 2 j + l + ~ 2 i + 1 , 2 j + 1 ' ~ 2 i , 2 j + l + ~ 2 i , z j + l ~ 2 i . 2 j  

where 
J 

,I 

J 

i , j  

for all lattice sites with spin. Here we have three states on a site i, 

ui = 0 or t 1 or - 1 (2.4) 
corresponding to impurity, spin-up and spin-down, respectively. In the present simu- 
lation we prepared a general algorithm for three states. Partly because this provides 
uniform operation for the whole lattice, which has an advantage in the vectorization 
of the program and partly because this can be extended to more general cases where 
the impurities can move (hopping of hole) or the case with S = 1. Thus, the unit of 
the local Boltzmann factor 

do1, u2, 

is 3* x 34, where m is the Pot ter  number. In the present case the model has the 
conservation law, 

u4, 4 , 4 , 4 , 4  = bl, u2, us, uq i e x d - 0  /ma(l)) I 4,4,4,4) 
(2.5) 

u1 + U 2  + u3 t uq = U; + U; + uj + 0; (2.6) 

and the size of the table of p is 3'. 
Detailed points of the simulation are given in the appendix but the most impor- 

tant new point is how to recover the ergodicity of the Monte Carlo time evolution. 
A 'Nee1 chain', which is a sequence of updown spins in real space in a 'Itotter layer, 
hardly flips simultaneously near impurities, if we do not include the global flip. And 
configurations are easily frozen at low temperatures. This also caused large enhance- 
ments of the staggered correlations 171. In order to avoid this effect we introduced 
a type of global flip around the impurities (loop flip) together with a non-straight 
Marcu flip [12]. 

3. Distribution of the staggered correlation 

3.1. Local enhancements 

In order to see the nature of the enhancement of the staggered magnetization around 
the impurities, we first investigated the ground state and several excited states of 4 x 4 
systems by a diagonalization method. Low-temperature data are obtained from low 
excitations using the canonical weight. The distribution of NN correlations are given 
for several samples in figure 1 (for comparison we used T = 0.2 J ) .  As we mentioned 
in section 1. it is natural that the NN correlations are enhanced but we find that some 
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further-neighbour correlations are also enhanced and these are listed in table 1. In 
particular figure l ( a )  was investigated in [6]. Although in the spin wave calculations 
the z- and r-components are not the same, a similiar tendency is found. For this 
lattice T = 0 and T = 0.2 are essentially the same. Next we study larger lattices in 
order to investigate how well-separated correlation functions are enhanced. The 4 x 4 
lattice is too small and even the furthest correlation function is enhanced in some 
configuration. Then we investigate 8 x 8 and 1 2  x 1 2  lattices by QMC. The distribution 
of NN correlations at T = 0 .25  for one configuration is given in figure 2, where we 
find enhancements which are qualitatively similar to those in figure 1. But we would 
like to point out that some correlations are reduced even in neighbours of impurities. 
This non-uniform enhancement will be discussed in section 4. The average of the NN 
correlations gives the energy. The concentration dependence of the energy E(6)  is 
given in figure 3, where E(6)  is normalized by the number of sites, N ,  and also the 
number of spins, N.. 
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0 Figure 1. Neamt neighbour spin correlations at 
T = 0.2 J for one configuration with L = 4 and 
(a)  one, ( b )  two and (c) four impurities normalized 

x- 1.006 -x- 1 . 2 5 4  -x 
I 

l 
1 . 2 5 4  1 . 2 5 4  

0 x- 1 . 0 0 6  -x- 1 . 2 5 4  to the pure case value (-0.4676) obtained by ex- 
I I act diagonalization. (Mare than 2% enhanced NNN 

----x 

1 (e) correlations are indicated by *.) 

Further-neighbour correlations are listed in table 2, where correlations enhanced 
by more than 4% are listed. We find that the number of enhanced correlations 
decreases as the distance increases. The range of enhancement is rather short. In 
order to see the distance dependence of the correlations, we study the square of the 
staggered magnetization in the next section. 
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Table 1. Funher-neighbour “elations e, enhanced by more than 2% normalized to 
the pure case value cp for the Same configurations as in figures l(a), (b). (c). 

Configuration of figure l(a) Configuration of Rgure I (b) Configuration of figure l(c) 

Site,-Site> e, cp Sitel-sitm c, cp Sitel-sitel c, CP 

(4, 1H2, 2) 1.038 0.269 (4, 3 w .  4) 1.035 0.269 
(4, 1x1, 3) 1.038 0.269 
(3, 3 H 4 ,  1) 1.038 0.269 
(2, 4 H 4 ,  1) 1.038 0.269 

3.2. Size dependence of the square of the staggered magnetization 

The square of N,, ( N t )  where (. . .) denotes the expectation value in the ground 
state, is a summation of all staggercd correlations in the sense 

Thus, if we study the size dependence of this quantity per spin, 

A = ( N ; / N : )  

the distance dependence of the correlation function can be known. In classical 
systems, A does not depend on N .  For quantum systems, A may be larger than 
the pure case in small lattices such as 4 x 4 because the short-range correlations 
dominate. On the other hand, for large lattices the long-range correlations dominate. 
The size dependence of A is plotted in figure 4, where we find that A decreases as the 
size increases. Thus we conclude that the correlation functions of largely separated 
spins are reduced by the existence of impurities. In figure 5 the correlation function 
for N = 12 with 6 = 0.125 averaged over five samples are compared with the pure 
case. Here we again see the reduction The amount of the reduction has not yet been 
investigated systematically but it might give a change in the percolation threshold of 
the impurity concentration for the long-range order in the ground state. This should 
be due to the quantum fluctuations and will be studied in future [U]. 

4. Summary and discussion 

We have studied the spin correlation function (S iS j ) .  Due to the quantum effects 
the correlation functions are modified even in the ground state. We have shown 
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Figure 2. Nearest neighbour spin correlations at T = 0 . 2  3 For one configuration with 
L = 8 and 8 impunties normalized to the pure case value (-0.462) obtained by QMC 
simulation. (More than 4% enhanced NNN correlations are indicated by *.) 

the distribution of correlation functions obtained by QMC for several samples. We 
found a similiar tendency, which has been previously pointed out [6]; namely the spin 
correlations are enhanced near the impurity sites (non-magnetic sites). But we also 
found that the range of the enhancement is somewhat short. On the other hand, the 
correlation functions are reduced at large distance. As we pointed out in section 2, the 
enhancement near impurities is not necessarily uniform. There are many correlations 
which are reduced even in the neighbours of impurities, although the others are very 
strongly enhanced. The mechanism of this non-uniform enhancement should have a 
purely quantum origin and it remained as ‘quantum interference’ in spin system. 

Here we would like to point out the following tendency of the enhancement The 
correlations at corner positions, where a spin has only two neighbours, are strongly 
enhanced (e.g. (z = 5, y = 4) or (Z = 6, y = 3) in figure 2). And the correlations of 
other spins which have only two neighbours also have the tendency to be enhanced. 
At least one of the correlations around spins with three neighbours is enhanced. Thus 
we see a strong relation between the number of neighbours and enhancement On 
the other hand we also find an alternate enhancement, namely, if a bond is enhanced, 
the next ones are reduced. The distribution of enhancement seems to be determined 
by these tendencies. Most cases in figure 2 can be understood in this way. A more 
precise mechanism for this competition between order and fluctuation will be studied 
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1.1 

6 
o.00 0.05 0.10 n.18 0.20 0.25 0.30 0.38 

-0.5 i 1 l b l  

Figure 3. Energy depending an impurity concenlratian 6 normalized (a) to the number 
of lattice siles N and (b)  10 lhe number of spins N .  (T = 0.25). 

Table 2. Further-neighbour correlations e, enhanced by more than 4% normalied 10 
lhe pure case value cp for lhe Same configurnlion as in figure 2. 

(5, 4 x 4 ,  5) 1.114 0.288 
(1. 4142. 51 1.067 0.288 . .  , . 
(4, I)+, 2j 1.056 0.288 
(2, 3 x 3 ,  4) 1.050 0.288 
(7, Zj-(6, 3j 1.050 0.288 
(5, 1 x 4 ,  2) 1.046 0.288 
(8, 8 x 7 .  1) 1.045 0.288 
(7, 2)-(8, 3) 1.041 0.288 
(7, 1 x 6 ,  3) 1.090 0.242 
(1, 1)-(8, 3) 1.085 0.242 
(8, 2 x 6 ,  3) 1.056 0.242 
(2, 5 x 8 ,  6) 1.0.50 0.242 
(2, S)-(l, 7) 1.042 0.242 

in the future [13]. 
We may expect that the effect of the quantum interference causes a rapid reduc- 

tion in the spin correlation function at a large distance in random systems, which is 
an analogy of the Anderson localization in spin systems. This reduction mechanism 
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6 

FLgure 4. Sublattice magnetization depending on impurity concentration 6 normalized 
lo (he number of spins N, (T = 0.2J). 

0 1 
1 2 4 5 6 3 r  

Flgure 5. The correlation (ugcf) as B function of the distance r lor N = 12 with 
6 = 0.0 and 6 = 0.125 a1 T =  0.2. 

might give a change in the percolation threshold of impurity concentration for the 
long-range order in the ground state. The point is being investigated and will be 
reported elsewhere [13]. Similar effects could be seen on the triangular lattice with 
non-magnetic impurities, although the frustration effect may have an important role 
for the local enhancements there (141. 

the enhancements of correlation due to the impurities, which is one of the most 
interesting features of the imhomogeneous quantum system. For the macroscopic 
quantities such as the energy, magnetization, etc, we have to perform a sample 
average over randomness of impurity position. In this paper we studied ( N : / N : )  
preliminarily in order to see the distance dependence of the correlation. So far we 
have found small scatterings of data over a few samples. But the properly averaged 
data will be reported elsewhere. The problem of the percolation threshold of the 
long-range order in the ground state will also investigated quantatively there (151. 

We would also like to point out the following. So far we have studied (S iSj ) ,  

prper 'vp r"nEO:rate 02 micrcSGpiC pmpert$s j" $st:j!?c~cfi of 
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Table 3. Flip acceplance ratios for one plane and the simulation of different nutter 
numbers mo for lhe flip types shown in figure 7 and the simulation of figure 9. 

Flip types 

mo 1 2 3 4 5 6 

16 0.0346 0.0344 0.0345 0.0345 0.0022 0.0021 
24 0.0155 0.0156 0.0158 0.0157 0.WM O.OKI5 

48 0.0031 0.0031 0.0031 0.0031 0.0003 O.Wo0 
32 0.0083 0.0083 0.0082 o.oom 0 . m  0 . ~ 0 ~  

which is the direct correlation. If we see the frequency of types of flip, we find that 
loop flips around impurities frequently occur. This suggests that the configurations 

In table 3, the acceptance ratios for flips are given. Thus it will also be interesting to 
study the canonical correlation 

axoas8 !he LqX;rilies ;'e? oftez chaxge keepkg the :e!ative an:Eerro=..ag:,etic ercer. 

where @ is the inverse temperature, at low temperatures. We also presented the 
technical details of our QMc algorithm, which are important to obtain correct data 
efficiently in the diluted systems and to overcome the ergodicity problem of the 
simulation. 

._-_I.-...-- Ac-knnwlrdomc-nts _..-.. _" 

The present work is partially supported by the Grant-in-Aid of the Ministry of Educa- 
tion, Sciences and Culture of Japan. One of the authors (JB) like to thank the B M R  
for financial support in Germany and the DAAD for financial support in Japan. 

Appendix 

In this appendix we describe the details of the QMC simulation. As has been men- 
tioned in section 2, we used the chequer-board type of the Suzuki-Trotter decompasi- 
tion. Thus the local Boltzmann factor contains four spins and then is a 34 x 34 matrix. 
Because an impurity does not move, the ergodicity of the simulation is much more 
difficult to satisfy than in the pure case. If we consider a worldline with a non-zero 
winding number between two impurities (figure 6), we find that the line cannot escape 
from the two impurities. Thus in order to satisfy the ergodicity of winding numbers 
we have to prepare types of global flip for all possible paths between the impurities. 
We prepare these in the following way. First we prepare 'a loop flip' around each 
cluster of impurities. Next, we prepare several horizontal global flips (Marcu flips), 
some of which are not straight. It is easy to see that a combination of these will give 
all possible paths. In figure 7 the different flip types which are used in the simulation 
are shown. 

We have compared the data with and without the new flips. First we have 
compared the distribution of NN correlations of figure l(b) (exact diagonalization) 
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b) 

@ 
Figm-e 6. A captured worldline between im- 
purilies (impurities am indicated by and 
invoked spins by x): ( 0 )  three-dimensional 
ltotler lattice (the worldline and lhe impu- 
rily positions are indicated by thick lines); 
and (b) fimt and second 'holler plane. 

Figure 7. Used combinations of spins for different flip types for lhe configurations of 
figure 9 with L = 4 and four impurities. No standard straight global flip is possible. 
(Impurity positions ace indicated by and spins used for the flip by x.) 

with the data by QMc without the new flips but with straight Marcu Rips and with 
those by QMC without the new flip types. We found that all of them agree within 
the error bars. This is so because the straight Marcu flips are sufficient to recover 
the ergodicity for this case. In the simulation which was previously reported, we used 
QMC with only the straight Marcu flips, which seemed to be sufficient. However we 
found that this was not enough for more complicated cases. Then, we look at the 
data for a lattice with four impurities. Here the straightest Marcu Rip no longer 
works. We find a clear difference between figures 8 and 9 (see also figure l(c)), 
and the data obtained by QMC without the new Rip types (figure 8)  show too much 
enhancement of the correlations. This is the reason why we reported too much 
enhancement in the previous report [7]. Now we believe that we have overcome 
this difficulty. In order to confirm the validity of the simulation, we compared two 
equivalent samples in different installations. Namely we shifted the origin site one 
iarrice spacing IO the riginr. Tnis is simpiy B iiaii&iiioiid Shih and does iioi eiiaiige 
anything physically because of the periodic boundary condition. But it gives large 
changes in the three-dimensional 'Itotter lattice. We performed both simulations and 
we found no difference between them. Thus, we conclude that our new method is 
valid for imhomogeneous quantum systems such as the present model. 
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Figure 8. Nearest neighbour spin correlations at Figure 9. Nearest neighbour spin correlations 
T = 0.25 for the same configuration as in figure at T = 0 . 2 5  for the same configuration a8 in 
l(c) normalized to the pure case value (-0.4676) figure l(c) normalized to the pure case value 
obtained by QMC (more than 2% enhanced nnn (-0.4676) obtained by QMC with additional new 
correlations are indicated by *.) types of flips (figure 7). 
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